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9.1 Introduction

Before the development of transit assignment models, it was assumed that the passenger assignment on a
transit network can be performed similarly as an auto network using all or nothing assignment of the demand
to the shortest paths. However, this is not a proper solution to the transit assignment problem due to the
phenomenon of waiting for transit service. Spiess and Florian [1989] said One is tempted to formulate the
above problem as: ”How does one find the path between two nodes in the transit network that minimizes the
expected total travel time?” and doing so one would have already changed the problem. This is because we are
accustomed to assuming that the passenger selects a single path between any pair of nodes in a network. This
may be true in the case of a car driver, but not in the case of a transit rider. Consider a passenger wishing
to travel between stop A and B in Figure 9.1 served by 5 different transit routes. Which transit route should
she choose? Chriqui and Robillard [1975] calls this problem as common bus lines problem. They proposed
that a passenger will select a subset of transit routes to minimize her expected waiting and travel time and
board the first arriving vehicle in that subset.

A B

Figure 9.1: Common lines

In this tutorial, we summarize various aspects of the frequency-based (FB) transit assignment. A FB transit
system is a system where passengers randomly arrive at bus stops and do not coordinate their arrival time
according to any schedule. Before describing the formal concepts, we should understand the phenomenon of
waiting for a transit route, which is explained by Larson and Odoni [1981] as a random incidence process.
They propose the following formula for the wait time distribution based on the headway (time between
successive arrival of a bus at a stop) of the bus route:

Prob. of bus arrival after w min =
1− (Prob of headway ≤ w)

Expected headway
(9.1)

If the headway follows an exponential distribution with the rate (frequency of the bus route) f , then we can
compute the distribution of the wait time (using (9.1)) as fe−fw, w ≥ 0, i.e., an exponential distribution
with rate f .

9.2 Strategy/Hyperpath

Spiess and Florian [1989] describes a strategy as a set of rules when applied helps a passenger to move from
an origin to a destination in a transit network. Chriqui and Robillard [1975] suggests one such strategy as:
Before starting a trip, the passenger has chosen an attractive set of transit lines (boards whichever arrives
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first) for every boarding stop she may encounter on her trip and for every transit line the alighting stop. Spiess
and Florian [1989] showed that this is an optimal strategy minimizing the expected wait and travel time of
passengers arriving at a stop randomly. Any strategy induces a sub-network between two nodes in the transit
network, which is formalized as a hyperpath by Nguyen and Pallottino [1988]. A hyperpath p between origin
r and destination k in network G(N,A) is an acyclic sub-network Hp = (Np, Ap, πp), where Np ⊂ N,Ap ⊂ A,

and πp(πijp) ∈ [0, 1]
|Ap|, such that r has no predecessor and k has no successor, there exists a path from

every node in Np to k and, πp satisfies
∑

j∈FSp(i)
πijp = 1. Here, πijp is the probability of selecting transit

route link (i, j) out of attractive routes FSp∗(i). If the headway of all transit routes associated to links
a ∈ FSp∗(i) are independent and follows an exponential distribution with frequency fa, then the probability
of taking transit route a = (i, j) : j ∈ FSp∗(i) = Prob (waiting for a is less than all other transit route) =

fa∑
a
′ f

a
′
,∀a = (i, j) : j ∈ FSp∗(i).

9.2.1 Computing shortest hyperpath

Nguyen and Pallottino [1988] proved that one can compute the optimal expected cost-to-go from node i to
destination node k, u∗

i , using the set of Bellman equations (9.2). As you can see that if i is part of the
boarding stops S, then the passenger selects an attractive set of outgoing routes FSp∗(i), for which the
expected waiting time, travel time, and rest of the optimal cost-to-go is added. However, finding FSp∗(i)
is stated as a combinatorial problem that can be difficult to solve. It turns out that a greedy approach can
find FSp∗(i). At every node i, initialize FSp∗(i) = ϕ and sort {u∗

j}j∈FS(i) in ascending order, then keep
adding j ∈ FS(i) in this sequence as long as the expected cost of travel keeps decreasing. Finally, one can
construct an efficient label setting/ label correcting algorithm to compute the solution of (9.2).

u∗
i =


0, if i = k,

min
j∈FS(i)

{cij + u∗
j} if i /∈ S

min
j∈FSp∗ (i)⊆FS(i)

{
1∑

∈FSp∗ (i) fij
+
∑

j∈FSp∗ (i)

(
fij∑

j∈FSp∗ (i) fij

(
cij + u∗

j

))}
if i ∈ S

(9.2)

9.2.2 Other remarks on hyperpaths

First, finding the optimal strategy/hyperpath is a stochastic shortest path problem (undiscounted Markov
Decision Process with a termination state). Here, states are the nodes in the network, actions are FSp∗(i)
at each node i, and costs are the waiting and travel time. In this case, a policy/strategy/hyperpath maps
each state i to a subset FS

′
(i) ⊆ FS(i). Corresponding to each policy, the transition matrix is given by

{πijp}j∈FS′ (i). The Bellman equation (9.2) can be solved using the value iteration, policy iteration, and
Linear Programming.

Second, finding the optimal strategy/hyperpath can also be viewed as a zero-sum game, in which a passenger
at every node i is playing against an adversary/nature/demon (Schmöcker et al. [2009]). The passenger plays
each strategy (selects a transit route) with certain probability πijp to minimize the worst-case expected cost
of travel. The payoff matrix has uj in every column of row j ∈ FS(i), except the diagonal entries where the
payoff is equal to uj +

1
fij

. Since it is a zero-sum game, it can be formulated as a Linear Program.

Third, the above model assumes that each passenger has a correct perception about the travel time and
wait time. This assumption can be relaxed using discrete choice models. One such example is logit-based
hyperpaths proposed by Nguyen et al. [1998].

Finally, the assumption of wait time following exponential distribution can be too restrictive. For example,
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if a bus route has a fixed headway of 10 minutes, then the probability of the bus arriving after 10 minutes
should be high. However, the exponential distribution has memoryless property and the elapsed time has no
effect on the probability. Billi et al. proposed to use Erlang distribution for the wait time and emphasized
the importance of the dynamic strategy, i.e., passengers keeps updating the strategy until boarding. Hickman
and Bernstein [1997] proposes a methodology to compute such a dynamic strategy.

9.3 Uncongested FB transit assignment

Spiess and Florian [1989] formulated the FB transit assignment as a Linear Program (9.3) for the case when
travel times are constant, there is no denied boarding due to capacity limits, and headways of various transit
routes follow an exponential distribution. Let O and D be the set of origins and destinations resp., and vak
and Wik be the flow on link (i, j) ∈ A and wait time of the passengers boarding at node i destined to k ∈ D
respectively. Then, the assignment can be formulated as (9.3) and solved using Algorithm 1.

minimize
v,W

∑
k∈D

(∑
a∈A

cavak +
∑
i∈S

Wik

)
(9.3a)

subject to
∑

a∈FS(i)

vak =
∑

a∈BS(i)

vak + gik,∀i ∈ N, ∀k ∈ D (9.3b)

vak ≤ faWik,∀a = (i, j) : j ∈ FS(i),∀i ∈ S, ∀k ∈ D (9.3c)

vak ≥ 0,∀a ∈ A,∀k ∈ D (9.3d)

gik =


dik, if i ̸= k, (i, k) ∈ O ×D

−
∑

o∈O dok, if i = k

0, otherwise

Algorithm 1 Algorithm for optimal strategy and link flows (Spiess and Florian)

1: for k ∈ D do
2: (Finding optimal strategy/hyperpath (Ap))
3: (Initialize) ui = ∞,∀i ∈ N\{r};uk = 0; fi = 0,∀i ∈ N ;S = A;Ap = ϕ
4: while S ≠ ϕ do
5: (Get next link) Find a = (i, j) ∈ S which satisfies uj + ca ≤ uj′ + ca′ ,∀a′

= (i
′
, j

′
) ∈ S

6: S = S\{a}
7: if ui ≥ uj + ca then (Update node label)

8: ui =
fiui+fa(uj+ca)

fi+fa

9: fi = fi + fa; Ap = Ap ∪ {a}
10: Go to step 5

11: (Assign demand according to optimal strategy)
12: (Initialize) Vi = gik,∀i ∈ N
13: for every link a ∈ A in decreasing order of (uj + ca) do (Loading)
14: if a ∈ Ap then

15: va = va +
fa
fi
Vi

16: Vj = Vj + va
17: else
18: Continue
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(9.2) can be used to derive the Spiess-Florian model. To see this, we can cast the dual of the S-F model
using the (9.2).

maximize
u

∑
k∈D

∑
i∈S

uk
i gik (9.4a)

subject to uk
i ≤ 1∑

j∈FS(i)

+
∑

j∈FS(i)

fj
(
cij + uk

j

)∑
j∈FS(i) fj

,∀i ∈ S,∀k ∈ D (9.4b)

(9.4b) can be written as

∑
j∈FS(i) fj∑
j∈FS(i) fj

uk
i ≤ 1∑

j∈FS(i)

+
∑

j∈FS(i)

fj
(
cij + uk

j

)∑
j∈FS(i) fj

,∀i ∈ S, ∀k ∈ D (9.5)

Assuming νak = uk
i − uk

j − ca, we can write:

maximize
u,ν

∑
k∈D

∑
i∈S

uk
i gik (9.6a)

subject to νak ≥ uk
i − uk

j − ca,∀a ∈ FS(i),∀k ∈ D (9.6b)∑
a∈FS(i)

faνak ≤ 1,∀i ∈ S, ∀k ∈ D (9.6c)

This is the dual of (9.3).

9.4 Congested FB transit assignment

Previous models assume that travel time and wait time functions are constant and are not affected by the
flow of passengers. This could result in unrealistic passenger flows on some transit routes, especially when
the number of passengers boarding a transit route is more than its capacity. Due to congestion, some of
the transit routes which were not attractive before may become attractive. The congestion in FB transit
assignment is modeled through the following ways:

9.4.1 Discomfort functions

Spiess and Florian [1989] considered an increasing discomfort function (in-vehicle travel time) cij(vij) to
capture growing discomfort with increasing number of passengers on-board. They found the equilibrium

by minimizing
∑

k∈D

(∑
ij∈A

∫ vak

0
ca(xak)dxak +

∑
i∈S Wik

)
instead of (9.3a). Further, Wu et al. [1994]

expressed travel time on in-vehicle links as the function of its flow, whereas they expressed wait time as sum
of two components:

1. a BPR-type asymmetric function of on-board flow and waiting flow

2. expected wait time due to multiple transit route in the strategy
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They formulated a variational inequality (VI) problem for the equilibrium and solved it using a symmetric
linearizion procedure.

9.4.2 Effective frequency

To incorporate congestion, De Cea and Fernández [1993] considered a transit network composed of route
sections. A route section is a unique link between two transfer nodes served by various transit routes. The
wait time for any route section s is equal to the sum of nominal wait time ( 1∑

l∈s fl
) and a BPR-type waiting

time (ϕs(v) = (v
s+ṽs
Ks

)n), where vs is the waiting flow, ṽs is the competing flow (passengers already on-board

and passengers using route section s for a different route), Ks is the practical capacity and ϕ−1
s is the ef-

fective frequency of the route section. Since this is an asymmetric assignment problem, they propose to use
diagonalization method to solve the problem.

One of the criticism of De Cea and Fernández [1993]’s approach is that the equilibrium flows may exceed
capacity of transit route due to soft capacity constraints imposed by the effective frequency. Cominetti and
Correa [2001] propose to use an effective frequency fa(va) which is a non-increasing function of waiting (vba)
and on-board (vxa) passenger flow. The effective frequency approaches 0 when the total flow on the transit
route reaches the capacity limit. Using the equilibrium conditions proposed in Cominetti and Correa [2001],
Cepeda et al. [2006] propose the following gap function (9.7) to compute the equilibrium flows. The problem
can be solved using a MSA-based heuristic, i.e., fix the flow vk, compute fa(vk) and ca(vk), then compute
solution v̂k of (9.7) using Algorithm 1, then update vk+1 = 1

kv
k+(1− 1

k )v̂
k, and repeat until the gap function

is close to 0.

minv
∑
k∈D

∑
a∈A

ca(v)vak +
∑
i ̸=k

max
a∈FS(i)

vak
fa(v)

−
∑
i̸=d

giku
∗
ik

 (9.7)

Consider X =
{
v ∈ R|A||D|

+ | (9.3b),
∑

k∈D vak ≤ ua

}
, where ua is the total capacity of route a and V =

×
k∈D

{
vk ∈ R|A|

+ |
∑

a∈FS(i) vak =
∑

a∈BS(i) vak + gik,∀i ∈ N
}
. Also, Sk

i =
{
α ∈ R|FS(i)|

+ |
∑

a∈FS(i) αa = 1
}

and S = ×
k∈D

×
i∈S

Sk
i . Let Fv(v, ζ) =

{
ca(v) + ζkawa(v); a ∈ FS(i), i ∈ S, k ∈ D

ca(v); a ∈ FS(i), i ∈ N\S, k ∈ D

}
and

Fζ(v) =
{
−wa(v)v

k
a ; a ∈ FS(i), i ∈ S, k ∈ D

}
. Codina [2013] formulated the capacitated transit assignment

problem as a variational inequality (VI) problem given below: Find (v∗, ζ∗) ∈ (V ∩X)× S s.t.,

Fv(v
∗, ζ∗)T (v − v∗) + Fζ(v

∗)T (ζ − ζ∗) ≥ 0,∀(v, ζ) ∈ (V ∩X)× S (9.8)

Under certain assumptions, Codina and Rosell [2017] showed that the variational inequality can be formulated
as the following non-convex problem (9.9) that can be solved using MSA-based heuristic.

minv,u
∑
k∈D

∑
a∈A

ca(v)uak +
∑
i ̸=k

max
a∈FS(i)

uak

fa(v)

 (9.9)

9.4.3 Failure to board probabilities

Kurauchi et al. [2003] suggests handling the capacity constraints using failure-to-board probabilities qi =
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min
{
1, 1− residual capacity

boarding passengers

}
. They split each stop nodes into two nodes, namely, boarding node S and

failure-to-board node E. The failure-to-board node is then connected to the destination node using a failure
arc. The modified Bellman equations (9.10) are specified below. Here, θ represents the risk of failure to
board.

u∗
i =



0, if i = s,

min
j∈FS(i)

{cij + u∗
j} if i /∈ S ∪ E

min
j∈FSp∗ (i)⊆FS(i)

{
1∑

∈FSp∗ (i) fij
+
∑

j∈FSp∗ (i)

(
fij∑

j∈FSp∗ (i) fij

(
cij + u∗

j

))}
if i ∈ S

−θ log(1− qi) + u∗
j , if i ∈ E

(9.10)
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with Common Lines. Journal of Mathematical Modelling and Algorithms, 2(4):309–327, 2003. ISSN
15701166. doi: 10.1023/B:JMMA.0000020426.22501.c1.

Richard C Larson and Amedeo R Odoni. Urban operations research. Number Monograph. Dynamic Ideas,
2nd editio edition, 1981.

S. Nguyen and S. Pallottino. Equilibrium traffic assignment for large scale transit networks. European Journal
of Operational Research, 37(2):176–186, 1988. ISSN 03772217. doi: 10.1016/0377-2217(88)90327-X.

Sang Nguyen, Stefano Pallottino, and Michel Gendreau. Implicit enumeration of hyperpaths in a logit model
for transit networks. Transportation Science, 32(1):54–64, 1998. ISSN 00411655. doi: 10.1287/trsc.32.1.54.



Lecture 9: Frequency-based transit assignment 9-7
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